
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 6, JUNE 2016 1129

Improving Short Utterance Speaker Recognition
by Modeling Speech Unit Classes
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Abstract—Short utterance speaker recognition (SUSR) is highly
challenging due to the limited enrollment and/or test data. We
argue that the difficulty can be largely attributed to the mis-
matched prior distributions of the speech data used to train the
universal background model (UBM) and those for enrollment and
test. This paper presents a novel solution that distributes speech
signals into a multitude of acoustic subregions that are defined by
speech units, and models speakers within the subregions. To avoid
data sparsity, a data-driven approach is proposed to cluster speech
units into speech unit classes, based on which robust subregion
models can be constructed. Further more, we propose a model syn-
thesis approach based on maximum likelihood linear regression
(MLLR) to deal with no-data speech unit classes. The experi-
ments were conducted on a publicly available database SUD12.
The results demonstrated that on a text-independent speaker
recognition task where the test utterances are no longer than
2 seconds and mostly shorter than 0.5 seconds, the proposed sub-
region modeling offered a 21.51% relative reduction in equal error
rate (EER), compared with the standard GMM-UBM baseline. In
addition, with the model synthesis approach, the performance can
be greatly improved in scenarios where no enrollment data are
available for some speech unit classes.

Index Terms—Short Utterance, Speaker Recognition,
Subregion Model, Model Synthesis.

I. INTRODUCTION

S PEAKER recognition aims to recognize claimed identi-
ties of speakers, including identification and verification.

It has gained great popularity in a wide range of applica-
tions including access control, forensic evidence provision,
and user authentication in telephone banking. After decades
of research, current speaker recognition systems have achieved
rather satisfactory performance, given that the enrollment and
test utterances are sufficiently long and the signal-to-noise ratio
(SNR) is large enough [1]–[5].

A traditional approach to speaker recognition is the GMM-
UBM framework [6], [7]. This approach involves a Gaussian
mixture model (GMM) based universal background model
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(UBM) to represent the probability distribution of acoustic fea-
tures from all speakers, and each enrolled speaker is represented
by a Gaussian mixture model (GMM) which is adapted from the
UBM via maximum a posteriori (MAP) estimation [8].

Another main-stream approach is based on joint factor anal-
ysis (JFA) and its ‘simplified’ version, the so-called i-vector
model. While JFA models speaker and channel variabilities in
two separate subspaces [9], the i-vector approach models these
variabilities in a single low-dimensional subspace [10].

To improve the i-vector model, a multitude of normalization
techniques have been studied and employed, such as with-in
class covariance normalization (WCCN) [11], [12], nuisance
attribute projection (NAP) [2], [10] and probabilistic LDA
(PLDA) [13]. These methods have been demonstrated to be
highly successful [5].

Recently, deep learning has gained much success in multi-
ple domains and caused extensive interests [14]. For speaker
recognition, a very recent study applies DNN models trained
for speech recognition to build UBMs, so that rich information
in phones can be employed to construct more accurate back-
ground models [15], [16]. Additionally, DNNs has been utilized
to extract speaker features [17], [18].

A. Challenge With Short Utterance

In spite of the great achievement, current speaker recogni-
tion systems perform well only if the enrollment and test data
are sufficiently long. In many applications, however, users are
reluctant to provide much speech data particularly at the test
phase, for instance in telephone banking. In other situations,
it is highly difficult to collect sufficient data, for example in
forensic applications.

If the enrollment and test utterances contain the same phone
sequence (so called ‘text-dependent’ task), short utterances
would not be a big problem [19]; however for text-independent
tasks, severe performance degradation is often observed if the
enrollment/test utterances are not long enough, as has been
reported in several previous studies.

For instance, Vogt et al. [20] reported that when the test
speech was shortened from 20 seconds to 2 seconds, the perfor-
mance degraded sharply in terms of equal error rate (EER) from
6.34% to 23.89% on a NIST SRE task. Mak et al. [21] showed
that when the length of the test speech is less than 2 seconds,
the EER raised to as high as 35.00%.

B. Research on Short Utterance Speaker Recognition

Research on short utterance speaker recognition (SUSR) is
still limited. In [22], the authors show that performance on
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short utterances can be improved through the JFA framework
that models speaker and channel variabilities in two separate
subspaces. This work is extended in [23] which reports that
the i-vector model can distill speaker information in a more
effective way so it is more suitable for SUSR. In addition, a
score-based segment selection technique has been proposed in
[24], which evaluates the reliability of each test speech segment
based on a set of cohort models, and scores the test utterance
with the reliable segments only. A relative EER reduction of
22% was reported by the authors on a recognition task where
the test utterances are shorter than 15 seconds in length.

It should be noted that the results reported in these research
studies are based on test utterances that are 5∼10 seconds long.
This is still rather long in many scenarios. For very short test
utterances, i.e., 1∼2 seconds in length, there are no satisfactory
solutions yet, to the authors′ best knowledge. In addition, if the
enrollment utterance is also short, the recognition will be more
challenging, for which very little research has been conducted.
This paper focuses on improving the recognition performance
on very short test utterances where the valid speech is of 2
words in maximum, and dealing with the situation where both
enrollment and test utterances are short.

C. Motivations

We argue that the difficulty associated with SUSR can be
largely attributed to the mismatched distributions of the speech
data used to train the UBM and to enroll/test a particular
speaker. Following the standard framework of GMM-UBM, the
characteristic of a particular speaker is modeled by a GMM. A
commonly adopted GMM-UBM setup is to train a UBM on a
pool of speech data involving a large number of speakers via
the EM algorithm [25], and then a speaker’s model is derived
from the UBM given the enrollment speech by MAP estima-
tion [26]. Although any components (means, covariances and
weights) can be adapted, mean adaptation is commonly adopted
and this approach is used in our study. With this setup, the like-
lihood of a test utterance x = {xt; t = 1, 2, . . . , T} evaluated
on the model of a speaker s is given by:

L(x; s) =
∏
t

∑
k

πkN (xt;μ
s
k,Σk) (1)

where xt is the speech feature vector at frame t, and k indexes
the Gaussian component.N (·;μs

k,Σk) is the k-th Gaussian
component with the adapted mean vector μs

k and the covariance
matrix Σk, and πk is the associated prior distribution. We high-
light that here {πk} are speaker independent since they are not
updated in speaker enrollment. This means that if the true dis-
tribution of an enrollment speech deviates from the model prior,
the enrolled model will be biased. Likewise, if the true distri-
bution of a test speech deviates from the prior, the likelihood
score for the test speech will be biased.

If the enrollment/test speech is sufficiently long, the true dis-
tribution of the speech tends to match the model prior well,
partly due to the fact that speech signals of a particular language
follow a certain natural distribution over phones. However, if
the enrollment/test speech is short, the model prior usually can

Fig. 1. Mismatch between the model prior and the true distributions of
enrollment/test speech signals.

not reflect the true distribution of the signal, leading to biased
speaker models and biased likelihood evaluation.

The problem of prior-mismatch is show in Fig. 1, where the
ellipses represent Gaussian components, and the two squares
represent the coverage of the enrollment and test speech respec-
tively. If the enrollment speech is sufficient, there is less
problem with the prior mismatch issue and the speaker model
can be well trained (the outer large square); however since the
test speech is short and so only part of the Gaussian components
are covered, the likelihood evaluation is biased. This is reflected
by the fact that computing the likelihood is impacted by the
Gaussian components that are not covered by the test speech.
If the enrollment utterance is short as well, the components
covered by the enrollment and test speech could be even non-
overlapping. This causes more severe problem because: (1) the
components covered by the test speech are not well trained in
enrollment; (2) the components that are trained in enrollment
are not the ones covered (required) by the test speech, which in
turn impacts the accuracy of the likelihood estimate.

This paper proposes a subregion modeling approach to
tackle this problem. Specifically, the acoustic feature space is
divided into a number of ‘homogeneous’ subregions, where
‘homogeneous’ means that the above mentioned matched-priori
assumption is satisfied. The UBM and speaker GMMs are then
constructed within each subregion, and the likelihood is com-
puted by merging the evaluations on all the individual subregion
models. This can be formulated as follows:

L(x; s) =
∏
t

∑
c

P (c|xt)
∑
k

πc,kN (xt;μ
s
c,k,Σc,k) (2)

where c indexes the regions, and P (c|xt) is the posterior prob-
ability that xt resides in the c-th subregion. This model can be
simplified by a ‘hard’ subregion assignment, given by:

L(x; s) ≈
∏
t

∑
k

πc̃,kN (xt;μ
s
c̃,k,Σc̃,k) (3)

where c̃ denotes the subregion that is assigned to xt by MAP,
given by:

c̃ = argmax
c

P (c|xt).

The central task of the above subregion modeling is to define
the subregions and estimate the posterior probability P (c|xt).
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This can be achieved by clustering the Gaussian components
in an unsupervised fashion and then computing P (c|xt) by the
Bayesian rule, but this is usually not satisfactory as the unsuper-
vised learning does not leverage any external knowledge so the
resulting model would not be very different from a larger GMM
with more Gaussian components. A more ideal approach is to
associate each subregion c with a speech unit, e.g., a phone. We
choose this approach and employ an automatic speech recog-
nition (ASR) system to conduct the subregion assigned by
the technique of forced phone alignment. This approach pos-
sesses several advantage. First, it is a supervised clustering that
involves linguistic knowledge, e.g., the phone inventory, and so
the constructed subregions tend to be homogeneous in nature.
Second, by employing ASR, it implicitly leverages much exotic
resources that are used to train the ASR system, e.g., large
speech data, word dictionaries and language models. Third,
with the phones obtained with ASR, it is possible to choose the
best discriminative subregions, such as those associated with
vowels or nasals.

With the subregion modeling, speakers can be modeled in a
more thorough way, given that sufficient training data are avail-
able for each speech unit. In practice, however, data are often
scarce for some speech units. This paper proposes a solution
which clusters similar speech units into speech unit classes, and
uses the speech unit classes to construct robust acoustic subre-
gions. This approach works well with sufficient enrollment data
as we will show in Section V; however, if the enrollment utter-
ance is short, it is still problematic. This is because some speech
unit classes may be assigned very little or even no enrollment
data, and so the corresponding subregion speaker models are
highly under-estimated. To solve this problem, a model syn-
thesis approach is proposed in this paper, which synthesizes
models for speech unit classes with very little training data from
classes with abundant data by a linear transform.

The rest of the paper is organized as follows: Section II
discusses some related works, and III presents the subregion
modeling, where we assume that the enrollment data is suf-
ficient. Section IV presents the model synthesis approach to
deal with speech units with limited enrollment data. Section V
describes the experiments, and the entire paper is concluded in
Section VI.

II. RELATED WORK

The idea of employing phonetic information in speaker
recognition has been investigated by previous research studies.
For instance, Omar et al. [27] proposed to derive UBMs from
Gaussian components of a GMM-based ASR system, with a
K-means clustering approach based on symmetric KL distance.
Another work is the DNN-based i-vector method proposed by
Lei and colleagues [16]. In their work, posteriors of senones
(context-dependent states) generated by a DNN trained for ASR
were used for model training as well as i-vector inference.

The subregion model presented here follows the same idea of
exploiting phonetic knowledge learned by ASR systems. The
difference is how the knowledge is used. Omar’s work uses
the GMM-based acoustic model to construct robust UBMs,
and Lei’s work uses DNN-based acoustic model to generate

Fig. 2. The Framework of the subregion modeling.

component posteriors for model training and inference. In con-
trast, the subregion approach presented here uses a full-fledged
ASR system to generate phone labels. An advantage of our
approach is that strong language models can be applied to offer
more accurate phone labels; additionally, the acoustic classes
(subregions) are modeled explicitly in our proposal, which
is highly flexible. For example, although GMMs are used in
the present study, it can be any generative model such as the
i-vector model.

Regarding the research for SUSR, it has been known that
the i-vector model possesses some advantages when dealing
with short enrollment/test utterances [23]. This may be largely
attributed to the nature of this model in sharing statistical
strength among different acoustic regions. The subregion model
tackles the SUSR problem in a different way: it relies on con-
ditional models that describe speech signals in the most appro-
priate acoustic classes. We believe that these two approaches
can be combined in a certain way but leave the investigation as
future work.

III. SUBREGION MODELING BASED ON

SPEECH UNIT CLASSES

The proposed subregion framework involves three compo-
nents. Firstly the speech unit classes are derived by clustering
similar speech units. Secondly the subregion models (including
UBMs and speaker GMMs) are trained for each subregion that
is defined by the speech unit classes. Finally test utterances are
scored with the subregion models. Fig. 2 illustrates the system
framework.

A. Speech Units Based on Finals

The inventory of speech units varies for different languages.
In Chinese, the language focused in this paper, speech units
can be words, syllables, Initials/Finals (IF) or phones [28].
Although language-independent speech units can be defined,
e.g., through the International Phonetic Association (IPA) [29]
and multi-lingual speaker/speech recognition systems [30],
[31], language-dependent speech units generally cover the
acoustic space in a better way. Therefore we consider Chinese-
specific speech units to define the subregions in this paper.

A widely used speech unit definition in Chinese is based
on the Initial/Final (IF) structure of syllables, where the ini-
tials correspond to consonants, and the finals correspond to
vowels and nasals [28]. Compared with other units such as
syllables and phones, the IFs are moderate in number (65 in
total) and can reflect the phonetic structure of Chinese pro-
nunciations. The IF set has been reproduced in Table I, where
{_a, _o, _e, _i, _u, _v} are zero initials and appear in non-initial
syllables [28].
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TABLE I
THE IF SET OF STANDARD CHINESE

Among the IFs, Finals have been found to convey more
speaker dependent/specific information than Initials [32], [33].
Better speaker recognition performance therefore can be
obtained by selecting speech segments corresponding to Finals
only. In other words, the Finals are the effective speech units
when constructing subregion models in this study.

B. Speech Units Clustering

Once the speech units are defined as the Finals, the subre-
gion modeling can be conducted by building Final-dependent
GMM-UBMs. This approach, however, is almost impossible
in practice, due to data sparsity caused by the large num-
ber of Finals. A possible solution is to cluster similar units
together and build subregion models based on the resulting
speech unit classes. Two clustering approaches are investigated
in this section, one is based on phonetic knowledge and the
other is data-driven.

1) Clustering by Phonetic Knowledge: The first approach
clusters the Finals based on phonetic knowledge. This paper
directly applies the definition of speech unit classes provided
by [34], which is based on tongue’s height and backness
information of the speech units in the IPA definition.

2) Clustering in Data-Driven Way: The second approach
clusters the Finals based on the distributions of speech sig-
nals of each Final. There are a multitude of approaches to this
clustering, e.g., the tree-based tying used for acoustic model-
ing in ASR [35] and unit selection in speech synthesis [36], the
greedy merge of similar classes used in maximum likelihood
linear regression (MLLR) [37], [38]. Most of these approaches
try various possible merge schemes and select the best one
that leads to maximum likelihood on training data. In this
study, we develop a vector quantization (VQ) method based
on the K-means algorithm [39] to conduct the clustering. In
contrast to the methods mentioned above, our approach calcu-
lates pair-wised distance among models, and then select close
models to merge. Since no training data need to be revisited
for every possible clustering schemes, our method is simple
and quick. A regression tree-based method which utilizes both
data and knowledge of phonetic classes tends to get better clus-
ters. However, since the clustering method itself is not the main
focus of this work, the simple K-means algorithm was used
in this study. Note that a similar approach has been employed
in [27].

The whole clustering process is illustrated as follows:

• Train a global UBM with a large training dataset. The
data are chosen to cover all the Finals, and are balanced
in terms of genders.

• Let N denote the number of Finals. Collect data of
each Final and train local (Final-dependent) UBMs based
on the global UBM by MAP. Again, the off-the-shelf
speech recognition system is employed to segment the
training speech data. Denote the local UBM of Final
i by λi = {πk, μi,k,Σk : k = 1, . . . ,K}. Note that only
{μi,k : k = 1, . . . ,K} are Final-dependent.

• Define the distance of two Final-dependent UBMs based
on the symmetric Kullback-Leibler (KL) divergence [40],
given by:

λi‖λj =

K∑
k=1

πk(N(μi,k,Σk)‖N(μj,k,Σk)) (4)

where

N(μi,k,Σk)‖N(μj,k,Σk) =
D∑

d=1

(μi,k(d)− μj,k(d))
2

σk(d)
2 ,

where D is the dimension of the feature vector. Note we
have assumed that the covariance matrices are diagonal,
and the d-th primary diagonal element has been denoted
by σ(d).

• Assume that the number of unit clusters requested is C.
Select C Final-dependent UBMs as the initial centers of
the C classes. The selection is based on the KL divergence
defined above and applies the max-min criterion, i.e.,
sequentially select the UBM whose minimum distance to
other UBMs is the maximum.

• The K-means algorithm [39] is conducted to cluster the N
Final-dependent UBMs into C clusters, with the distance
measure set to the KL divergence.

C. Subregion Modeling Based on Speech Unit Classes

Denote the speech unit classes (Final clusters) by {SUC-c :=
1, . . . , C}. Based on the classes, a subregion UBM can be
trained for each SUC-c with the training data that are aligned
to the Finals in SUC-c by the speech recognition system.
The subregion UBM of class SUC-c is denoted by λUBM

c .
The speaker-dependent subregion GMM models can be trained
based on the subregion UBMs, using the enrollment data that
have been aligned to the Finals.

In summary, the entire process of the subregion modeling
approach is illustrated in Fig. 3, and the details are as follows:

• Global UBM training, denoted by λUBM . A global UBM
is trained with the entire training dataset by employing the
expectation-maximization (EM) algorithm [25], [41].

• Subregion UBM training. The speech recognition system
is used to align the speech signals (acoustic features) to
the Finals. The aligned speech data are then assigned to
the C speech unit classes according to the definition of
{SUC-c}. A subregion UBM λUBM

c is trained for the c-th
speech unit class based on the global UBM, by employ-
ing the MAP algorithm [26] and with the speech data
assigned to SUC-c.
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Fig. 3. Speaker-dependent subregion model training. ‘SUC’ stands for speech
unit class.

• Subregion speaker model training. For a speaker s, first
segment the enrollment speech data into Finals and assign
the speech data to the speech unit classes, by the same
way as in the subregion UBM training. Then for each
speech unit class SUC-c, a subregion speaker-dependent
GMM λs

c is trained by MAP adaption from the subregion
UBM λUBM

c with the assigned enrollment data.
Note that with the subregion model, the total parameters

of a speaker model would be significantly increased, possibly
leading to the problem of data sparsity. However, the prob-
lem is not as that serious as the first glance, because only the
mean vectors are updated while priors and variances are shared
across subregions. Nevertheless, it would be certainly good if
some pruning approach is applied to remove unrepresentative
Gaussian components. We leave this pruning method as future
work.

D. Scoring With Subregion Models

With the speaker-dependent subregion GMMs trained, a test
utterance can be scored by scoring on each subregion and taking
the average. More sophisticated approach to fuse the subregion
scores is left for future study. Suppose a test utterance contains
L Finals according to the decoding result of speech recogni-
tion, and denotes the speech unit class of the l-th final by c(l).
Further denote the speech segment of this unit by Xl, and its
length is Tl. The score of Xl is measured by the log likelihood
ratio between the subregion speaker-dependent GMM λs

c(l) and

the subregion UBM λUBM
c(l) , where s denotes the speaker. This

is formulated by:

ϕi,l = log p(Xl|λi
c(l))− log p(Xl|λubm

c(l) )

The score of the entire utterance is computed as the average of
the segment-based scores:

ϕi =

∑L
l=1 ϕi,l∑L
l=1 Tl

.

IV. SPEAKER MODEL SYNTHESIS

The subregion modeling presented in the previous section
models and scores speech signals in appropriate subregions,
and therefore does not rely on the global prior distribution, i.e.,
{πk} in (1). If all the subregion models are well trained, then
a major difficulty associated with SUSR, i.e., the biased prior
distribution caused by short test utterances, is largely solved.

A potential problem of this approach is that if the enrollment
utterance is short as well, some of the subregion models can
be under-estimated, which will lead to significant performance
reduction if the test utterances fall in the data-sparse subre-
gions. The unit clustering approach discussed in the previous
section can partially solve the problem, however it is still prob-
lematic if the enrollment utterance is very short. In this section,
we propose a model synthesis approach to address the prob-
lem, which constructs subregion models for speech unit classes
with no or very limited enrollment data based on data-rich sub-
region models by a linear transform. The basic assumption is
that the relationship between two subregion models does not
change when speaker-dependent models (subregion GMMs) are
adapted from speaker-independent models (subregion UBMs),
and the relationship can be represented by a linear transform.
These transforms can then be applied to synthesize speaker-
dependent GMMs for speech unit classes with limited data. In
this study, we employ the maximum likelihood linear regression
to train the linear transform.

A. Maximum Likelihood Linear Regression

The maximum likelihood linear regression (MLLR) [37],
[42] was first proposed by the Cambridge group to deal with
channel mismatch and speaker variability in speech recogni-
tion. Given a GMM λ = (πk, μk,Σk : k = 1, 2, . . . ,K) and a
speech segment X , the MLLR seeks a linear transform L that
maximizes the likelihood function

P (X;λ, L) =
∑
k

πkN(X;Lξk,Σk) (5)

where

ξk = [μk,1, . . . , μk,D, 1]

is the extended mean vector, and D is the dimension of speech
features. L is an D × (D + 1) transformation matrix. The opti-
mization of the matrix L in the sense of maximum likelihood
gives the following estimation:

Li = κiGi
−1

where Li is the i-th row of L, and κi, Gi
−1 are calculated as:

κi =
K∑

k=1

T∑
t=1

rk(t)
1

σk
2(i)

xi(t)ξk
T

Gi =
K∑

k=1

1

σk
2(i)

ξkξk
T

T∑
t=1

rk(t)

where t indexes time, xi(t) is the i-th element of the feature
vector at time t, and rk(t) is the posterior probability of x(t)
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Fig. 4. Illustration of model synthesis based on subregion UBMs. ‘SUC’ stands
for speech unit class.

which belongs to the k-th Gaussian component. σk
2(i) is the

i-th primary diagonal element of Σk, where we have assumed
that Σk is diagonal.

B. Model Synthesis Based on Subregion UBMs

With the MLLR technique, a transform Li,j can be learned
for each subregion UBM pair (λUBM

i , λUBM
j ). Since the

amount of speech data aligned to each speech unit class is rela-
tively large when training the subregion UBMs, the transforms
can be easily learned. For example, to learn Li,j , the subre-
gion UBM λUBM

i is used as the GMM model in (5), and the
speech data aligned to the j-th speech unit class are used as the
adaption data X .

Once the transforms are learned, they can be used to syn-
thesize speaker-dependent subregion GMMs in speaker enroll-
ment. Specifically, the enrollment speech data is first segmented
by the speech recognition system and the speech features are
assigned to the speech unit classes. If a speech unit class j
involves sufficient training data, then the subregion GMM λs

j

is derived by MAP from the corresponding subregion UBM
λUBM
j , where s denotes the speaker. If the speech unit class

involves little training data, then the subregion GMM is synthe-
sized from a well-trained speaker-dependent subregion model,
λs
i for example. The synthesis is implemented as a linear

transform:

μj,k = Li,j

[
μi,k

1

]
k = 1, 2, . . . ,K

where k indexes the Gaussian components.
Fig. 4 illustrates the subregion UBM-based model synthesis.

Firstly the transform Li,j is learned to map the subregion UBM
λUBM
i to λUBM

j , and then Li,j is used to synthesize the speaker
subregion GMM λs

j based on λs
i .

C. Model Synthesis Based on Cohort Speakers

A particular shortcoming of the subregion UBM-based
model synthesis is that the transforms {Li,j} are speaker inde-
pendent. This is a strong assumption, as different speakers

Fig. 5. The illustration of model synthesis based on cohort speakers. ‘SUC’
stands for speech unit class.

may exhibit completely different characteristics when moving
from one pronunciation to another. We propose the speaker-
dependent transforms based on cohort sets.

A cohort set [43] is a cluster of speakers that share similar
characteristics. Given a speaker s, there is an individual cohort
set H(s, c) for each subregion c, and every cohort set H(s, c)
involves speakers that are similar to speaker s in the c-th sub-
region. The KL divergence is used to measure speaker distance
in our study, as given by (4).

The cohort speaker-based synthesis is illustrated in Fig. 5.
Firstly we chose a universal cohort speaker set H which
involved 300 speakers, and each speaker was modeled by a set
of subregion GMMs, defined as {λh

c : c = 1, 2, . . . , C}, where
h indexes the speaker and c indexes the subregion. Secondly
the MLLR transform was estimated for each speaker h between
each subregion pair (i, j), denoted by {Lh

i,j : h ∈ H}.
When registering a speaker s, for each speech unit class c, if

the training data are sufficient, the subregion speaker model λs
c

is trained directly by MAP with the corresponding subregion
UBM λUBM

c ; otherwise, it is synthesized from subregion mod-
els of his/her cohort speakers. Specifically, specify a data-rich
subregion of the speaker, e.g., subregion c′, and then specify the
cohort set H(s, c′) ⊂ H by finding the similar speakers in the
universal cohort set H . The subregion model λs

c for data-sparse
subregion c is then synthesized from the data-rich subregion
model of speaker s, i.e., λs

c′ and the linear transforms defined
by the cohort set, that is {Lh

c′,c : h ∈ H(s, c′)}. Again, only the
mean vectors are synthesized, formulated by:

μs
c,k =

∑
h∈H(s,c′)

Lh
c′,c

[
μs
c′,k
1

]
k = 1, 2, . . . ,K

where k indexes the Gaussian components.

V. EXPERIMENTS

A. Database

1) Database for Evaluation (SUD12): There is not a stan-
dard database for performance evaluation on text-independent
SUSR tasks. A possible way to construct an SUSR database
quickly is to cutting out words or phrases from a database
used for general speaker recognition. This approach, however,
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TABLE II
DI-IF STATISTICS OF SUD12 ENROLLMENT DATA

TABLE III
LENGTH DISTRIBUTION OF SUD12 TEST DATA

may introduce artifacts when cutting continuous speech sig-
nals. We therefore decided to design and record a database
that is suitable for SUSR research and publish it for research
usage1. The database was named as “SUD12” [44], [45], and
was designed in the principle to guarantee sufficient IF balance.
In order to focus on short utterances and exclude other factors
such as channel and emotion, the recording was conducted in
the same room and with the same microphone, and the reading
style was neutral. There are in total 28 male speakers and 28
female speakers, and all the utterances are in Standard Chinese.
The sampling rate is 16 kHz, and the sampling precision is 16
bits. For each speaker, there are 100 Chinese sentences, each of
which contains 15 ∼ 30 Chinese characters. These sentences
were selected by the ELFU algorithm [46] from 5, 000 sen-
tences in the news domain taken from the Peoples Daily, with
the objective to maximize the di-IF coverage [47]. The IF cov-
erage rate is 100% and the di-IF coverage rate is 82%, and each
IF exists in at least 10 utterances. The statistics of the di-IF is
presented in Table II.

The enrollment dataset involves all the 56 speakers. For
each speaker, 10 utterances are randomly selected and merged
together as the enrollment speech. After removing the silence
segments, the effective speech signals for enrollment is about
35 seconds.

The test dataset of SUD12 involves 56 speakers, and each
speaker speaks 62–63 short utterances, which covered all the
Finals in Standard Chinese. The lengths of the recordings are
not more than 2 seconds and mostly shorter than 0.5 seconds.
The distribution is shown in Table III. The evaluation involves
3, 523 target trials and 197, 293 non-target trials.

2) Database for UBM Training (863DB): The speech data
used to train the UBMs and subregion UBMs were chosen from
the 863 Chinese speech corpus [48]. The 863 database was well
designed to cover all the Chinese IFs, and which is particularly
suitable to train subregion UBMs for speech unit classes. All
the recordings are at a sampling rate of 16 kHz, and the sample
precision is 16 bits. In this study, we chose 38 males and 33
females from the 863 corpus, and for each speaker, there are
150 speech utterances in average, and the length of the speech

1http://www.cslt.org/resources.php?Public%20data

signals is 17 hours in total. This dataset is denoted by 863DB
for convenience.

3) Database for Cohort Speaker Selection (dEarDB):
In order to construct cohort-based MLLR transforms, we
employed another cohort speaker database that was recorded
by Beijing d-Ear Technologies Co., Ltd. for Korea Speech
Information Technology and Promotion Center. It contains 150
male speakers and 150 female speakers. As SUD12, the record-
ings are sampled at 16 kHz with 16-bit precision. For each
speaker, 250 Standard Chinese sentences were recorded, and
the effective speech content of each utterance is approximately
3 seconds long. This database is denoted by dEarDB.

B. Experimental Conditions

The Kaldi toolkit [49] was adopted to conduct the experi-
ments, and the recipe to reproduce the results can be found
online2. Following the standard recipe of SRE08, the acous-
tic feature is the conventional 60-dimensional Mel frequency
cepstral coefficients (MFCC), which involves 20-dimensional
static components plus the first and second order derivatives.
The frame size is 25 ms and the frame shift is 10 ms. The num-
ber of mel-frequency bins is 23 and the frequency range is from
20 Hz to 8, 000 Hz.

Note that a simple energy-based voice activity detection
(VAD) is performed before the feature extraction, and the
cepstral mean normalization (CMN) [50] is applied as a
post-process to reduce the impact of channel mismatch.

We chose the conventional GMM-UBM approach to con-
struct the baseline system. The UBM consisted of 1, 024
Gaussian components and was trained with the 863DB. Note
that this setting is ‘almost’ optimal in our experiments, i.e.,
using more Gaussian components can not improve system per-
formance in any significant way. The SUD12 was employed to
conduct the evaluation. With the enrollment data, the speaker
GMMs were derived from the UBM by MAP, where the MAP
adaptation factor was optimized so that the EER on the test set
was the best. The final result on the SUD12 test set is 28.97% in
EER. This is a reasonable performance for SUSR that involves
short utterances less than 2 seconds [21], [22].

The ASR system used to generate the phone alignment was a
large scale DNN-HMM hybrid system. The system was trained
using Kaldi following the WSJ S5 recipe. The feature used is
40-dimensional Fbanks. The basic features are spliced by a win-
dow of 11 frames, and an LDA (linear discriminative analysis)
transform is applied to reduce the dimension to 200. The DNN
structure involves 4 hidden layers, each containing 1, 200 hid-
den units. The output layer contains 6, 761 units, corresponding
to the number of GMM senones. The DNN was trained with
6, 000 hours of speech signals, and the decoding employed a
powerful 5-gram language model trained on 2 TB text data.

For comparison, a GMM-based i-vector system and DNN-
based i-vector system were also constructed. The GMM-based
i-vector system used the same UBM model as the GMM-UBM
system, and the dimension of the i-vector is 400. For the DNN-
based i-vector system, the DNN model was trained following

2http://lilt.cslt.org
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Fig. 6. EERs with different numbers of speech unit classes in data-driven
clustering.

TABLE IV
SPEECH UNIT CLASSES DERIVED IN DATA-DRIVEN WAY

the same procedure as the one used for the ASR system, but
with less number of senones. In our experiments, the number
is 928, comparable to the number of Gaussian components of
the GMM-UBM system.3 The dimension of the i-vector space
is set to 400, and the posteriors produced by the DNN model
are used in both model training and i-vector extraction.

C. Subregion Modeling

The first experiment investigates the subregion modeling
based on speech unit clustering. Two clustering approaches are
studied: the knowledge-based approach (‘SBM-KW’) and the
data-driven approach (‘SBM-DD’). For the knowledge-based
approach, we simply follow the definition of speech unit classes
described in [34]. For the data-driven approach, it is necessary
to choose an appropriate number of classes for the clustering
algorithm. If the number of classes is small, the subregions tend
to be not homogeneous in terms of prior distributions and so
can not well deal with short test utterances, and if the number
of classes is large, the problem of data sparsity is more seri-
ous. In order to determine the optimal class number (denoted
by C), the recognition performance with various values of C
has been evaluated and the results are reported in Fig. 6. It can
be seen that either too small or too large values lead to subop-
timal performance, and the optimal setting in our experiment is
C=6. Table IV shows the derived unit classes with this config-
ure. It can be seen that the clustering result is reasonable at least
intuitively.

3Note that it is not easy to set the exact number of senones in the ASR system
with the tree-based clustering algorithm for context-dependent states.

TABLE V
PERFORMANCE COMPARISON

Fig. 7. The DET curves with the GMM-UBM/i-vector baselines, and two
subregion modeling methods.

The results in terms of EER are presented in Table V,
where ‘GMM-UBM’ is the GMM-UBM baseline system,
‘GMM i-vector’ denotes the traditional GMM-based i-vector
system, and ‘DNN i-vector’ denotes the DNN-based i-vector
system.

‘SBM-KW’ and ‘SBM-DD’ are subregion systems with
the knowledge-based and data-driven speech unit clustering,
respectively. Note that the optimal number of classes (C=6) has
been employed in the data-driven system. For a better under-
standing of the performance on various operation points, the
DET curves are presented in Fig. 7, where the horizontal axis
represents the false acceptance rate (FAR) and the vertical axis
represents the false rejection rate (FRR) [51].

We first observe that the GMM-UBM baseline outperforms
the two i-vector systems. This might be largely because no
normalization methods (e.g., PLDA) are applied to the i-
vector systems. The DNN-based i-vector system outperforms
the GMM-based i-vector system in a significant way. This is
also expected as the phonetic knowledge was employed by the
DNN-based system.

Furthermore, it can be seen that the systems based on sub-
region modeling outperform the GMM-UBM baseline, with
either the knowledge-based or data-driven clustering approach.
When comparing the two clustering approaches, it is observed
that the data-driven approach is more effective. This is probably
because the data-driven approach takes into account the charac-
teristics of real data, and the balance of data over the resultant
speech unit classes may have lead to more robust subregion
models.
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TABLE VI
RESULTS WITH MODEL SYNTHESIS BASED ON SUBREGION UBMS

One may argue that the comparison in Table V is not com-
pletely fair, as the subregion model involves more parameters
and thus naturally more powerful. This is certainly true in
general, however in practical systems where training and enroll-
ment data are limited, more complex models unnecessarily
deliver better performance. In fact in our experiment, it showed
that 1024 Gaussian components are sufficient for the con-
ventional GMM-UBM model to describe the entire acoustic
space (at least with the current modeling approach based on
EM/MAP) and adding more components did not offer clear
advantage. Therefore, the gains obtained by the subregion mod-
eling should not be attributed to the increased parameters, but
the new modeling method based on subregions that are derived
from the external speech recognition system.

D. Model Synthesis

The second experiment studies the MLLR-based model syn-
thesis for speech unit classes with very little enrollment data.
We choose the class definition in Table IV, and simulate data-
sparse speech unit classes by discarding the speech segments
assigned to the class.

1) Synthesis Based on Subregion UBMs: We study the
model synthesis approach based on subregion UBMs. The
results are shown in Table VI, where the value shown in
the element (SBSi,SBBj) is the EER with the i-th subregion
model synthesized from the j-th subregion model. The column
‘Average’ presents the averaged EER over all the subregion j.
The column ‘NULL’ presents the results without any model
synthesis and here it is regarded as the baseline system. It can be
seen that with the model synthesis, the performance is generally
improved compared with the baseline system. An exception is
the subregion 6, for which the synthesis does not work well
because the pronunciations in this acoustic class is absent.
Checking Table IV, one can find that most of the phones in
this class are ended with the nasal ‘ng’. It seems to indicate that
nasal-ended Finals are difficult to be synthesized. Moreover, the
pronunciations of this class take only a small proportion of the
entire test dataset, and therefore the result presented here is not
statistically significant.

2) Synthesis Based on Cohort Speakers: As discussed
in Section IV, synthesis based on subregion UBMs suffers
from the speaker-independent assumption for MLLR trans-
forms. This experiment studies the speaker-dependent synthesis
approach based on speaker-dependent cohort sets. For simplic-
ity, we choose the 3-th speech unit class as the data-sparse class

TABLE VII
RESULTS WITH MODEL SYNTHESIS

and synthesize the subregion model from the model of the 4-th
speech unit class.

Firstly we investigate the impact of the size of the speaker-
dependent cohort set. It was found that the EER first drops as
the size of the speaker-dependent cohort set increases, until
the best performance is reached; afterward, the EER starts to
increase as the size of the cohort set increases. In our exper-
iment, the best result is obtained when the size of the cohort
set is set to 80. This optimal value is used in the rest of the
experiments.

Table VII presents the results with the MLLR-based model
synthesis, where the row ‘NO-MLLR’ presents the sys-
tem without any treatment for the data-sparse speech unit
class. Compared with the case with sufficient enrollment data
(‘SMB-DD’), significant performance reduction is observed.
This means that enrollment data sparsity indeed causes seri-
ous impact for speaker recognition. The row ‘MLLR-UBM’
presents the system with model synthesis based on subregion
UBMs, and the row ‘MLLR-COHORT’ presents the system
with model synthesis based on speaker-dependent cohort sets. It
can be found that model synthesis does offer clear performance
improvement in the case with limited enrollment data, and the
cohort-set-based synthesis slightly outperforms the subregion
UBM-based synthesis.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a subregion modeling approach for
text-independent short utterance speaker recognition. To deal
with the problem of data sparsity in enrollment and test, the
speech units (IFs) are clustered into speech unit classes in the
subregion modeling; and to deal with short enrollment utter-
ances, a model synthesis approach based on MLLR has been
proposed. The experimental results show that the proposed sub-
region modeling approach, plus the data-driven speech unit
clustering, gains significant performance improvement on very
short test utterances. In the case of limited enrollment data, the
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simulation experiment shows that the model synthesis approach
based on both the subregion UBMs and cohort speakers can
largely recover the performance lost caused by enrollment
data sparsity. Future work involves combination of feature-
based and model-based compensations for short utterances, and
testing the proposed approaches in the i-vector framework.

REFERENCES

[1] J. P. Campbell, Jr., “Speaker recognition: A tutorial,” Proc. IEEE, vol. 85,
no. 9, pp. 1437–1462, Sep. 1997.

[2] W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. Singer, and
P. A. Torres-Carrasquillo, “Support vector machines for speaker and lan-
guage recognition,” Comput. Speech Lang., vol. 20, no. 2, pp. 210–229,
2006.

[3] F. Bimbot et al., “A tutorial on text-independent speaker verification,”
EURASIP J. Appl. Signal Process., vol. 2004, pp. 430–451, 2004.

[4] T. Kinnunen and H. Li, “An overview of text-independent speaker recog-
nition: From features to supervectors,” Speech Commun., vol. 52, no. 1,
pp. 12–40, 2010.

[5] C. S. Greenberg et al., “The 2012 NIST speaker recognition evaluation,”
in Proc. INTERSPEECH, 2013, pp. 1971–1975.

[6] D. A. Reynolds, “Speaker identification and verification using gaussian
mixture speaker models,” Speech Commun., vol. 17, no. 1, pp. 91–108,
1995.

[7] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted Gaussian mixture models,” Digit. Signal Process., vol. 10,
nos. 1–3, pp. 19–41, 2000.

[8] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for mul-
tivariate Gaussian mixture observations of Markov chains,” IEEE Trans.
Speech Audio Process., vol. 2, no. 2, pp. 291–298, Apr. 1994.

[9] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint factor anal-
ysis versus eigenchannels in speaker recognition,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 15, no. 4, pp. 1435–1447, May 2007.

[10] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 19, no. 4, pp. 788–798, May 2011.

[11] A. O. Hatch, S. S. Kajarekar, and A. Stolcke, “Within-class covari-
ance normalization for SVM-based speaker recognition,” in Proc.
INTERSPEECH, 2006, pp. 1471–1474.

[12] M. Senoussaoui, P. Kenny, N. Dehak, and P. Dumouchel, “An i-vector
extractor suitable for speaker recognition with both microphone and
telephone speech,” in Proc. Odyssey, 2010, pp. 28–33.

[13] S. J. Prince and J. H. Elder, “Probabilistic linear discriminant analysis
for inferences about identity,” in Proc. IEEE 1th Int. Conf. Comput. Vis.
(ICCV’07), 2007, pp. 1–8.

[14] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” J.
Found. Trends Signal Process., vol. 7, no. 3–4, pp. 197–387, Jun. 2014,
Hanover, MA, USA: Now.

[15] P. Kenny, V. Gupta, T. Stafylakis, P. Ouellet, and J. Alam, “Deep neural
networks for extracting baum-welch statistics for speaker recognition,” in
Proc. Odyseey, 2014, pp. 293–298.

[16] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for
speaker recognition using a phonetically-aware deep neural network,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2014,
pp. 1695–1699.

[17] V. Ehsan, L. Xin, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-dependent
speaker verification,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), 2014, pp. 4052–4056.

[18] L. Li, D. Wang, Z. Zhang, and T. F. Zheng, “Deep speaker vectors for semi
text-independent speaker verification,” arXiv preprint arXiv:1505.06427,
2015.

[19] A. Larcher, K.-A. Lee, B. Ma, and H. Li, “RSR2015: Database for text-
dependent speaker verification using multiple pass-phrases,” in Proc.
INTERSPEECH, 2012, pp. 1580–1583.

[20] R. Vogt, S. Sridharan, and M. Mason, “Making confident speaker verifi-
cation decisions with minimal speech,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 18, no. 6, pp. 1182–1192, Aug. 2010.

[21] M.-W. Mak, R. Hsiao, and B. Mak, “A comparison of various adaptation
methods for speaker verification with limited enrollment data,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2006, vol. 1,
pp. I–I.

[22] R. J. Vogt, C. J. Lustri, and S. Sridharan, “Factor analysis modelling for
speaker verification with short utterances,” in Proc. Odyssey, 2008.

[23] A. Kanagasundaram, R. Vogt, D. B. Dean, S. Sridharan, and
M. W. Mason, “i-vector based speaker recognition on short utterances,”
in Proc. 12th Annu. Conf. Int. Speech Commun. Assoc. (ISCA), 2011,
pp. 2341–2344.

[24] M. Nosratighods, E. Ambikairajah, J. Epps, and M. J. Carey, “A segment
selection technique for speaker verification,” Speech Commun., vol. 52,
no. 9, pp. 753–761, 2010.

[25] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal
Process. Mag., vol. 13, no. 6, pp. 47–60, Nov. 1996.

[26] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for mul-
tivariate Gaussian mixture observations of Markov chains,” IEEE Trans.
Speech Audio Process., vol. 2, no. 2, pp. 291–298, Apr. 1994.

[27] M. K. Omar and J. W. Pelecanos, “Training universal background models
for speaker recognition.” in Proc. Odyssey, 2010, pp. 52–57.

[28] J.-Y. Zhang, T. F. Zheng, J. Li, C.-H. Luo, and G.-L. Zhang, “Improved
context-dependent acoustic modeling for continuous chinese speech
recognition.” in Proc. INTERSPEECH, 2001, pp. 1617–1620.

[29] I. P. Association, Handbook of the International Phonetic Association:
A Guide to the Use of the International Phonetic Alphabet. Cambridge,
U.K.: Cambridge Univ. Press, 1999.

[30] T. Schultz and A. Waibel, “Language-independent and language-adaptive
acoustic modeling for speech recognition,” Speech Commun., vol. 35,
no. 1, pp. 31–51, 2001.

[31] À. Colomé, “Lexical activation in bilinguals’ speech production:
Language-specific or language-independent?,” J. Memory Lang., vol. 45,
no. 4, pp. 721–736, 2001.

[32] H. Beigi, Fundamentals of Speaker Recognition. New York, NY, USA:
Springer, 2011.

[33] C. Gong, Research on Highly Distinguishable Speech Selection Methods
in Speaker Recognition. Beijing, China: Tsinghua University, 2014.

[34] N. Fatima, X.-J. Wu, T. F. Zheng, C.-H. Zhang, and G. Wang, “A uni-
versal phoneme-set based language independent short utterance speaker
recognition,” in Proc. 11th Nat. Conf. Man-Mach. Speech Commun.
(NCMMSC’11), Xi’an, China, 2011, pp. 16–18.

[35] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying
for high accuracy acoustic modelling,” in Proc. Workshop Hum. Lang.
Technol., 1994, pp. 307–312.

[36] A. W. Black and P. A. Taylor, “Automatically clustering similar units for
unit selection in speech synthesis,” in Proc. Eurospeech, 1997, vol. 2,
pp. 601–604.

[37] C. J. Leggetter and P. Woodland, “Maximum likelihood linear regression
for speaker adaptation of continuous density hidden Markov models,”
Comput. Speech Lang., vol. 9, no. 2, pp. 171–185, 1995.

[38] M. J. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Comput. Speech Lang., vol. 12, no. 2,
pp. 75–98, 1998.

[39] A. Hall, “Methods for demonstrating resemblance in taxonomy and
ecology,” Nature, vol. 214, pp. 830–831, 1967.

[40] B. Xiang and T. Berger, “Efficient text-independent speaker verifica-
tion with structural Gaussian mixture models and neural network,” IEEE
Trans. Speech Audio Process., vol. 11, no. 5, pp. 447–456, Sep. 2003.

[41] J. A. Bilmes, “A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models,”
Int. Comput. Sci. Inst., vol. 4, no. 510, p. 126, 1998.

[42] A. Stolcke, S. S. Kajarekar, L. Ferrer, and E. Shrinberg, “Speaker recog-
nition with session variability normalization based on MLLR adaptation
transforms,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 7,
pp. 1987–1998, Sep. 2007.

[43] A. E. Rosenberg, J. DeLong, C.-H. Lee, B.-H. Juang, and F. K. Soong,
“The use of cohort normalized scores for speaker verification,” in
Proc. 2nd Int. Conf. Spoken Lang. Process. (ICSLP), 1992, vol. 92,
pp. 599–602.

[44] C.-H. Zhang, L.-L. Wang, J. Jang, and T. F. Zheng, “A multimodel
method for short-utterance speaker recognition,” in Proc. Asia-Pac.
Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), 2011.

[45] C. Zhang, X.-J. Wu, T. F. Zheng, L.-L. Wang, and C. Yin, “A K-
phoneme-class based multi-model method for short utterance speaker
recognition,” in Proc. Asia-Pac. Signal Inf. Process. Assoc. Annu. Summit
Conf. (APSIPA ASC), 2012, vol. 20, no. 12, pp. 1–4.

[46] Z.-Y. Xiong, F. Zheng, W. Wu, and J. Li, “An automatic prompting texts
selecting algorithm for DI-IFS balanced speech corpus,” in Proc. Nat.
Conf. Man-Mach. Speech Commun., 2003, pp. 252–256.

[47] S. Dobrisek, F. Mihelic, and N. Pavesic, “Acoustical modelling of phone
transitions: Biphones and diphones-what are the differences?,” in Proc.
6th Eur. Conf. Speech Commun. Technol., 1999, pp. 1307–1310.



LI et al.: IMPROVING SUSR BY MODELING SPEECH UNIT CLASSES 1139

[48] D. Wang, X.-Y. Zhu, and Y. Liu, “Multi-layer channel normalization
for frequency-dynamic feature extraction,” J. Software, vol. 12, no. 9,
pp. p1523–1529, 2005.

[49] D. Povey et al., “The kaldi speech recognition toolkit,” in Proc. IEEE
Signal Process. Soc. Workshop Autom. Speech Recognit. Understand.,
Dec. 2011, Catalog No.: EPFL-CONF–192584.

[50] S. Furui, “Cepstral analysis technique for automatic speaker verifica-
tion,” IEEE Trans. Acoust., Speech Signal Process., vol. ASSP-29, no. 2,
pp. 254–272, Apr. 1981.

[51] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,
“The DET curve in assessment of detection task performance,” in Proc.
Eurospeech, vol. 4, 1997, pp. 1895–1898.

Lantian Li received the B.Sc. degree from China
University of Mining and Technology, Beijing,
China, in 2013. He is currently pursuing the Ph.D.
degree at the Center for Speech and Language
Technology (CSLT), Tsinghua University, Beijing,
China. His research interests include speaker recog-
nition with machine learning methods.

Dong Wang (M’09) received the B.Sc. and
M.Sc. degrees in computer science from Tsinghua
University, Beijing, China, in 1999 and 2002,
respectively, and the Ph.D. degree (supported by a
Marie Curie fellowship) from CSTR, University of
Edinburgh, Edinburgh, U.K., in 2010. He was with
Oracle China from 2002 to 2004, and IBM China
from 2004 to 2006. He joined CSTR, University of
Edinburgh in 2006, as a Research Fellow. From 2010
to 2011, he was with EURECOM as a Postdoctoral
Fellow, and from 2011 to 2012, was a Senior

Research Scientist with Nuance. He is now an Assistant Professor with
Tsinghua University.

Chenhao Zhang received the B.Sc. degree in com-
puter science from Beijing University of Posts and
Telecommunications, Beijing, China, in 2009. Since
2009, he has been with the Center for Speech and
Language Technology, Tsinghua National Laboratory
for Information Science and Technology, Tsinghua
University, Beijing, China. His research interests
include speaker recognition, particularly with limited
training/test data.

Thomas Fang Zheng (M’99–SM’06) received the
Ph.D. degree in computer science and technology
from Tsinghua University, Beijing, China, in 1997.
He is now a Research Professor and the Director of
the Center for Speech and Language Technologies,
Tsinghua University. He has authored more than 250
papers. His research interests include speech and
language processing.

Dr. Zheng plays active roles in a number of com-
munities, including the Chinese Corpus Consortium
(Council Chair), the Standing Committee of China¡s

National Conference on Man-Machine Speech Communication (Chair),
Subcommittee 2 on Human Biometrics Application of Technical Committee
100 on Security Protection Alarm Systems of Standardization Administration
of China (Deputy Director), the Asia-Pacific Signal and Information Processing
Association (APSIPA) (Vice-President and Distinguished Lecturer from 2012
to 2013), Chinese Information Processing Society of China (council mem-
ber and Speech Information Subcommittee Chair), the Acoustical Society of
China (council member), and the Phonetic Association of China (council mem-
ber). He was an Associate Editor of the IEEE TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING and the APSIPA Transactions on
Signal and Information Processing. He is on the Editorial Board of Speech
Communication, Journal of Signal and Information Processing, SpringerBriefs
in Signal Processing, and the Journal of Chinese Information Processing.


