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Abstract 

Speaker verification performance degrades when input speech is tested in different sessions over a long period of time chronologically. 
Common ways to alleviate the long-term impact on performance degradation are enrollment data augmentation, speaker model adaptation, and 
adapted verification thresholds. From a point of view in features of a pattern recognition system, robust features that are speaker-specific, and 
invariant with time and acoustic environments are preferred to deal with this long-term variability. In this paper, with a newly created speech 
database, CSLT-Chronos, specially collected to reflect the long-term speaker variability, we investigate the issues in the frequency domain by 
emphasizing higher discrimination for speaker-specific information and lower sensitivity to time-related, session-specific information. F -ratio 
is employed as a criterion to determine the figure of merit to judge the above two sets of information, and to find a compromise between 
them. Inspired by the feature extraction procedure of the traditional MFCC calculation, two emphasis strategies are explored when generating 
modified acoustic features, the pre-filtering frequency warping and the post-filtering filter-bank outputs weighting are used for speaker 
verification. Experiments show that the two proposed features outperformed the traditional MFCC on CSLT-Chronos. The proposed approach 
is also studied by using the NIST SRE 2008 database in a state-of-the-art, i-vector based architecture. Experimental results demonstrate the 
advantage of proposed features over MFCC in LDA and PLDA based i-vector systems. 
© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Speaker verification is a biometric authentication technol-
ogy that can automatically verify a speaker’s identity with
speaker-specific information embedded in speech. Similar to
other pattern recognition systems, it consists of a training
process (to obtain speaker models from training data) and
a recognition process (to verify whether a claimed identity
is correct or not). This technology enables access control of
various services by voice, including: voice dialing, telephone
banking, telephone shopping, database access services, infor-
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ation and reservation services, voice mail, security control
or confidential information, and remote access of computers
urui (1997) . Apart from the above commercial applications,

t also has applications in forensics Künzel (1994) . In all ap-
lications, training and recognition processes are usually sep-
rated chronologically, which makes the short-term and long-
erm speaker variability an unavoidable issue in maintaining
 decent performance in speaker verification. 

.1. The long-term speaker variability issue 

Some pioneering researchers believed the identifiable
niqueness does exist in voice as fingerprints, but questions
till remained to be answered at the same time Kersta (1962) :
oes the voice of an adult change significantly with time? If

o, then how to alleviate or eliminate them? In 1997, Furui
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ummarized advances in automatic speaker recognition in
ecades and raised an open question about the way to deal
ith long-term variability in people’s voices Furui (1997) . It
as conjectured whether there is any systematic long-term
ariation that can update speaker models to cope with gradual
ong-term changes. A similar question was raised in Bonastre
t al. (2003) , where the authors argued that a major challenge
o uniquely characterize a person’s voice is to harness voice
hange over time. 

Performance degradation has been observed in separated
ime intervals for practical systems. Soong et al. (1985) con-
luded from experiments that the longer the separation be-
ween training and testing recordings, the worse the perfor-
ance. Kato and Shimizu (2003) also reported a significant

oss in accuracy between two sessions separated by three
onths and they conjectured that ageing was considered to

e the cause Hébert (2008) . 

.2. Overview of existing approaches 

It is generally acknowledged that speaker verification per-
ormance degrades with time separation between enrollment
nd testing. To some extent, this speaker variability issue
ight be seen as part of the more general session variabil-

ty issue in speaker verification, which could be typically
olved nowadays by joint factor analysis (JFA) and i-vector
pproaches Dehak et al. (2009 , 2011) ; Kenny et al. (2005 ,
007a , 2007b , 2008 ). However, researchers have also pro-
osed several specific approaches with respect to long-term
peaker variability. 

From a machine learning point of view, more training
ata leads to more representative models. Therefore, some
esearchers resorted to several training (enrollment) sessions
ver a long period of time to cope with the long-term vari-
bility in speech Bimbot et al. (2004) ; Soong et al. (1985) .
n Markel and Davis (1979) , the best speaker verification per-
ormance was obtained when 5 sessions, where adjacent ses-
ions are separated by at least 1 week apart were used to
efine the reference (training) set. In Beigi (2009 , 2010) , au-
hors explored two adaptation techniques: data augmentation
nd MAP adaptation Gauvin and Lee (1994) . The data aug-
entation approach is to augment positively identified data

o the enrollment data of a speaker to retrain a more robust
nrollment model for the speaker. This approach required the
riginal data to be stored for re-enrollment. An alternative
ay is to use MAP adaptation to adapt the original model to a
ew model by considering the new data just augmented. Both
pproaches yield promising results. Other speaker-adaptation 

echniques, such as MLLR-based adaptation Leggetter and
oodland (1995) , can also be used to reduce the effects

f model aging. In Lamel and Gauvin (2000) , after adap-
ation of the speaker models on data from the intervening
ession, the equal error rate (EER) of the last two sessions
an be reduced from 2.5% to 1.7% on a French telephone
orpus. 

Different from the adapting the enrollment data or the
peaker models, there are also studies on the verification
cores. Researchers observed that verification scores of gen-
ine speakers decrease progressively with the time separa-
ion between training and verification sessions, while impos-
or scores are less affected Kelly et al. (2012a , 2012b , 2013) ;
elly and Harte (2011) . A stacked classifier method of intro-
ucing an age-dependent decision boundary can be applied,
nd significant improvement against long-term variation can
e obtained. 

While more training data or gradually updated speaker
odels from extra adaptation data does yield performance

mprovement, however, these of approaches either require
 longer speaker registration process, or need a sophisti-
ated risk-benefit analysis to determine whether an utter-
nce could be used to update the speaker model. Thus,
ogether with efficiency, the shortcoming is also obvious,
s it is costly, user-unfriendly and sometimes may be un-
ealistic for real applications. Also, simply by updating a
peaker’s model from the more recent data leads to little
asic understanding of the aging issue. Conversely, the age-
ependent score in a threshold approach makes use of the
act that verification score changes over time, which tends to
e more meaningful in dealing with the long-term speaker
ariability. 

.3. Efforts in the feature domain 

The foresaid approaches do not cover the features’ role
n speaker verification Huang et al. (2001) . Speech signal
ncludes many features, which are unequally distributed in
heir relative importance in speaker discriminability. An ideal
eature should have large between-speaker variability and
mall within-speaker variability, not be affected by long-term
ariation in voice Kinnunen and Li (2010) ; Rose (2002) ;
olf (1972) . Therefore, we aim at addressing the long-term

peaker variability issue in the feature domain, i.e., to ex-
ract more exact speaker-specific and time-insensitive (i.e.
table across different sessions) information. Since acoustic
eatures are closely related to speech signal frequencies, ef-
ort is made in different frequency bands in this paper. We
ry to identify frequency bands that reveal higher discrim-
nation for speaker-specific information and lower sensitiv-
ty with respect to different sessions. Thus during the fea-
ure extraction, more emphasis should be placed on those fo-
used frequency bands. Through this kind of discriminability
mphasis, the resultant features can be more robust against
he long-term speaker variability for speaker verification
ystems. 

The rest of this paper is organized as follows. In Sec-
ion 2 , a new speech database (CSLT-Chronos), specifically
esigned for investigating the long-term speaker variability
ssue is described in detail. Based on our observations, the
roposed approach is systematically presented in Section 3 .
lgorithms of the two problems related to the approach are
resented in Sections 4 , 5 . Experimental results are given
n Section 6 . In Section 7 , conclusions are drawn and future
esearch directions are suggested. 
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Table 1 
A summary of major characteristics of different databases. 

Database Spkrs Sessions Time span Speaking style Recording environment Channel conditions Samp. rate 

YOHO Campbell and Higgins (1994) 138 14 3 Reading Office Microphone 8kHz 
months 

CSLU Cole et al. (1998) 91 12 2 Repeating and Various Telephone 8kHz 
years free speech locations 

Greybeard Brandschain et al. (2010) 172 mostly mostly conversational Various Telephone 8kHz 
12 2–4 years locations 

MARP Lawson et al. (2009a) 32 21 34 Conversational Anechoic Microphone 8kHz 
months room 

Used in 17 10 3 Interview IAC sound Microphone 6.5kHz 
Markel and Davis (1979) months room 

Used in 22 3 5 Question - Various 8kHz 
Beigi (2009 , 2010) months responses channels 
NTT-VR Matsui and Furui (1992) 36 5 10 reading - Microphone 16kHz 

months 
AWA-LTR Kuroiwa and Tsuge (in press ) 6 once 2–10 Reading Soundproof Microphone 16kHz 

a week years room 

TCDSA Kelly and Harte (2011) 26 4-35 28–58 Broadcasts Various Various 8kHz 
years locations channels 

Used in 100 35 2 Reading and Various Telephone 8kHz 
Lamel and Gauvin (2000) years spontaneous locations 
CSLT-Chronos 60 14 2 years Reading Lab Microphone 8kHz 
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2. CSLT-Chronos: the speech database 

2.1. Known databases 

A proper speech database collected chronologically to re-
flect the aging effects in speakers’ voices is essential for this
study but challenging. There are currently several speech re-
sources, some of which are available through the LDC (Lin-
guistic Data Consortium), such as the YOHO Speaker Ver-
ification Database Campbell and Higgins (1994) , the CSLU
Speaker Recognition Corpus Cole et al. (1998) , the Grey-
beard Corpus Brandschain et al. (2010) (used in NIST SRE
2010), and the MARP corpus Lawson et al. (2009a , 2009b) .
However, these databases were not well designed for the re-
search on the long-term speaker variability issue in speaker
recognition. The following gives a general analysis of these
known databases in four aspects: the time span, the number
of recording sessions, the number of speakers, and the im-
pact from factors other than time intervals (such as recording
environments, speaking styles, and so on). 

The databases used in Beigi (2009 , 2010) ; Markel and
Davis (1979) , as well as the YOHO Speaker Verification
Database, only have a time span of three to five months,
which is not long enough. The NTT-VR database Matsui
and Furui (1992) has a time span of ten months, but only
contains five recording sessions. Databases with longer time
span usually have a smaller number of speakers. For exam-
ple, the AWA-LTR database in NII-SRC Kuroiwa and Tsuge
(in press ) has six speakers, while the TCDSA Database Kelly
et al. (2012a , 2012b , 2013 ); Kelly and Harte (2011) has 26.
The CSLU Speaker Recognition Corpus, the Greybeard Cor-
pus, and the database used in Lamel and Gauvin (2000) col-
lected speech samples through phone calls. Thus the back-
ground noise and phone channels were uncontrollable. The
ame problem also exists in the TCDSA Database, for its
peech samples were from various sources: broadcasts, TV in-
erviews or public speeches. Furthermore, the MARP corpus,
he CSLU Speaker Recognition Corpus, the Greybeard Cor-
us, and the TCDSA Database are in a form of free-flowing
onversations (or interviews). In this case, speech contents
ere not fixed, and the speakers’ emotions, speaking styles,
r engagement level could be easily influenced by his/her
artner in the conversation or audience; all these were su-
erfluous variability in this research targeted at the long-term
ariability in speaker verification. A summary of major char-
cteristics of these databases is listed in Table 1 . 

.2. The CSLT-Chronos 

With the aim to examine solely the impact of long-term
peaker variability on speaker verification, a speech database
ith a suitable size has been created, named as CSLT-
hronos, which contains 14 recording sessions within a time

pan of approximately two years. Since long-term speaker
ariability is the only focus of CSLT-Chronos, other factors
uch as recording equipments, software, conditions and en-
ironment are kept as constant as possible throughout all
ecording sessions. 

Two major factors were well considered, the prompt texts
nd the time intervals. 

Speakers were requested to utter in a reading style, prede-
ned fixed prompted texts instead of free-style conversations.
rompt texts were designed to remain unchanged throughout
ll recording sessions for all speakers to avoid or to reduce
he impact of speech contents on speaker verification per-
ormance. The prompt texts were made up of 100 Chinese
entences selected from The Peoples Daily using the selec-
ion algorithm proposed in Xiong et al. (2003) . The length of
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Table 2 
Acoustic coverage of prompt texts. 

Acoustic unit Number covered Total number Percentage (%) 
in prompt texts 

Initials 23 23 100 
Finals 38 38 100 
di-IFs 1183 1523 78 

First Year

Second Year Recording Session

Fig. 1. An illustration of the timeline of recording sessions. 
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ach sentence ranges from 8 to 30, with an average of 15,
hinese characters. 

Chinese is a syllabic language with an Initial/Final struc-
ure where there are 21 Initials and 38 Finals Zhang et al.
2001) . Pronunciations of these Initials and Finals (IF) are
trongly influenced by their contexts, so the di-IF modeling
similar to that of diphones) is used in prompt texts selection
iong et al. (2003) . Due to characteristics of Chinese sylla-
les, there are altogether 1523 di-IFs. The acoustic coverage
f the designed prompt texts is listed in Table 2 . 

Since there exists no precedent reference of time inter-
al design and it is costly, perhaps unnecessary, to record in
 fixed-length time interval resolutions more than ten times
eeded, gradient time intervals were used in this database. To
e concrete, the first four sessions were recorded in an inter-
al, separated by approximately one week, the following four
essions in an interval of approximately one month, with the
ength of intervals increasing gradually, based on a hypothesis
hat the speaker verification performance degrades drastically
n the beginning, and not so much when the time difference
etween testing and training becomes longer. The timeline of
ecording sessions is illustrated in Fig. 1 . 

Sixty university students were recruited for this project,
ith 30 males and 30 females, and they all speak standard
andarin Chinese fluently. An ordinary room (about 3.5 m

ong, 2 m wide and 2.5 m high) in the laboratory was used for
ecording with a table-mounted omni-directional microphone, 
here there was no burst noise (such as printers, phone ring-

ng, or background speakers) with only the ambient noise at a
ow level (such as ventilation noise). Sampling was performed
t a rate of 8kHz using a USB sound card (Creative SB X-Fi
o). In the first session, all speakers were carefully trained on
ow to make recordings. We did not apply calibration tones
efore recordings. 
In short, the special design of prompt texts, time intervals,
nd recording setup makes the CSLT-Chronos a suitable one
or studying the long-term speaker variability in speech per-
eption, speech production, speaker verification and speaker-
ependent speech recognition. 

.3. Observations on CSLT-Chronos: the long-term effect 

Observations and experiments were done over the newly
reated database CSLT-Chronos in this study. 

Since speakers were trying to familiarize with the record-
ng procedure in the first recording session which makes the
rst session not be of expected quality (pauses in the recorded
tterances, speaking rates change, volume fading, or style
hange, etc.), following experiments in this paper were based
n utterances from the other 13 recording sessions (from the
econd session to the fourteenth session) with a time span of
pproximately 2 years. 

A 1024-mixture Gaussian Mixture Model - Universal
ackground Model (GMM-UBM) speaker verification system
eynolds et al. (2000) was adopted, where 16-dimensional
FCCs and their first derivatives were used as acoustic fea-

ures Xiong et al. (2006) to evaluate the long-term effect.
he UBM was trained using another speech corpus of 4-h,
4-speaker microphone data recorded in the laboratory with
2 male and 42 female. The speakers uttered the sentences in
 reading style and the reading materials are from newspapers
nd they were different for each speaker. 

We consider the second session (regarded as day 0 in the
xperiments) as the training session and all sessions as veri-
cation sessions. That is, data from the second session were
sed to train speaker models. Specifically, speaker models
ere trained with 3 utterances randomly selected from the en-

ire 100 utterances with a length of about 10 s from the second
ession, and all other utterances from all sessions were used
or verification, with each utterance ranging from 2 to 5 s.
hen, a list of EERs was obtained corresponding to each ses-
ion, with each EER calculated after approximately 360,000
 = 60 × 100 × 60) verification trials. This list of EERs can
emonstrate how the performance of the speaker verification
ystem changes with time elapse as shown by the black line
ith solid dots in Fig. 2 . Here, all sessions are distributed

long the horizontal axis according to their time intervals from
he second session (day 0) in days. 

To further evaluate the long-term impact, the third session
around day 10) and the seventh session (around day 120)
ere also taken as the training session, respectively. Then

nother two lists of EERs were obtained, corresponding to
he red line with hollow dots and the blue line with stars in
ig. 2 . Finally, similar experiments were done with all other
essions as training sessions as well, and a surface plot of
hese 13 lists of EERs is shown in Fig. 3 . 

The general trend of these lines clearly demonstrated the
ong-term speaker variability effect. We confirm the assump-
ion that the speaker verification performance degrades dras-
ically in the beginning, and gradually flattens out as time
oes on. 
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Fig. 2. Three lists of EERs corresponding to three different training sessions. 
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Lu and Dang have shown in their previous research that
the speaker-specific information is distributed non-uniformly
across different frequency bands Lu and Dang (2007 , 2008) ,
and they adopted Fisher’s F -ratio to measure the importance
of speaker information. Although the F -ratio criterion has
theoretical limitations in situations where the classes have
same means or are not unimodal as demonstrated in Campbell
(1997) , it was shown to give similar trends as those of mutual
information measurements but easier to use in non-uniform
subband filters design Lu and Dang (2007 , 2008) , and re-
mains a popular approach in speaker discrimination measure-
ment Gallardo et al. (2014a , 2014b) ; Hyon et al. (2012) ;
Kinnunen (2002 , 2003) ; Lei and Gonzalo (2009) ; Orman
and Arslan (2001) . A similar experiment was performed in
our database, also with the F -ratio criterion to determine
the discrimination-sensitivity for the speaker-specific informa-
tion in different frequency bands, hereinafter referred to as
F _ rat io _ spk . 

In Lu and Dang (2007 , 2008) , the authors divided the
whole frequency range (16 kHz) into 60 frequency bands uni-
formly. In our case, the whole frequency range (8 kHz) was
also divided into 30 frequency bands uniformly, and linear-
scaled triangular filter banks were also used to process the
corresponding power spectrum. The output of filter banks af-
ter taking the logarithm was seen as power of corresponding
frequency bands. Suppose there were I speakers and S time-
spaced sessions for F -ratio calculation. 

In each recording session s , for each frequency band k , an
F -ratio value, denoted as F _ rat io _ spk s,k , was obtained from
 D
q. (1) : 

 _ rat io _ spk s,k = 

I ∑ 

i=1 

(
μi,s,k − μs,k 

)2 

I ∑ 

i=1 

1 

N i,s 

N i,s ∑ 

j=1 

(
x i,s, j,k − μi,s,k 

)2 

, (1)

here x i, s, j, k was power of the frequency band k in frame j
f speaker i in session s, N i, s was the total frame number of
peaker i in session s , and, μi, s, k and μs, k were correspond-
ng averages calculated as follows. 

i,s,k = 

1 

N i,s 

N i,s ∑ 

j=1 

x i,s, j,k . (2)

s,k = 

1 

I 

I ∑ 

i=1 

μi,s,k . (3)

An illustration of F _ rat io _ spk curves of five sessions sep-
rated from each other by approximately half a year (to be
oncrete, the second, eighth, eleventh, thirteenth, and four-
eenth sessions) is shown in Fig. 4 . 

It can be seen that the lower frequency bands (below
.3 kHz) and higher ones (above 2.5 kHz) exhibit more
peaker discriminative power than middle ones, which was
imilar with findings on other databases in previous litera-
ure Auckenthaler and Mason (1997) ; Besacier and Bonastre
1997) ; Kinnunen (2003) ; Lei and Gonzalo (2009) ; Lu and
ang (2007 , 2008) , in spite of different languages. 
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Fig. 3. The long-term speaker variability effects on performance of speaker verification systems. 
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The basic trend of each F _ rat io _ spk curve along fre-
uency bands is more or less the same among the five record-
ng sessions, while the values change to varying degrees, with
arger variation especially in the higher frequency. This vari-
bility in discrimination-sensitivity can be viewed as an in-
icator of existence of the long-term effect of the speaker-
pecific information, as all other factors were kept as constant
s possible during recording. Therefore, a possible assumption
s that the long-term variable part of the speaker-specific in-
ormation is also distributed non-uniformly among frequency
ands, which brings about the possibility to make efforts in
he frequency band level to extract more speaker-specific and
ime-invariant information as acoustic features. 

. The discriminability emphasis method 

.1. Focusing on critical frequency bands 

The vocal cord (source) and the vocal tract (filter) are two
mportant components in speech production, and properties
f them, such as length, elasticity, and shape, are different
rom one speaker to another. Thus, it is generally believed
hat they contribute to the speaker-specific information for
peaker recognition. 

Lu and Dang (2007 , 2008) have investigated the rela-
ionships between the frequency components and the vocal
ract based on speech production, and found that speaker in-
ormation is not uniformly encoded in different frequency
ands. It has also been confirmed by us in prior section on
ur database. Statistical methods were employed to quantify
he dependencies between frequency components and speaker
dentities to improve the speaker recognition performance.
he idea of analyzing the contribution of different frequency
ands will shed light on the long-term variability issue in
peaker verification. 

Furthermore, It is known that the fundamental frequency
eflects characteristics of vocal cords, while “formants” or
pectral envelope reflect those of vocal tracts. Studies in phys-
ology have shown that the fundamental frequency of both

ales and females decreases with age after adulthood Rhodes
2011) ; Stathopoulos et al. (2011) . Reubold et al. launched
 long-term study of the possible changes in adult speech,
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and found that the changes of the first formant during this
long-term observation are roughly the same as those of the
fundamental frequency Reubold et al. (2010) . 

Thus, broadly speaking, the slowly declining trends in both
the fundamental frequency and the first formant, can be seen
as a change of the distribution of the speaker-specific infor-
mation among different frequency bands of speech signals as
time goes on. In other words, in view of the long-term speaker
variability issue, the distribution of this speaker-specific infor-
mation among frequency bands, can be split into two parts:
the more invariable and less invariable ones over time, as
indicated in Fig. 4 . 

In speaker verification, frequency bands with more
speaker-specific information should be emphasized for fea-
ture, while in considering of the long-term speaker variability,
frequency bands with less time-related information should be
emphasized, which is the starting point of the proposed dis-
criminability emphasis method. 

3.2. The discriminability emphasis method 

The discriminability emphasis proposed is to place differ-
ent weights on frequency bands according to their discrimina-
tion capability of time-invariant acoustic features for speaker
verification. 

Obviously, the proposed method should deal with two core
issues: how to determine the discrimination-sensitivity in fre-
quency bands for the target task, and how to place different
emphasis among frequency bands. The two issues are further
investigated in the following two sections. 
. Discrimination-sensitivity determination 

In this section, a strategy based on the F -ratio crite-
ion is proposed to determine the discrimination-sensitivity
n different frequency bands. Then the overall discrimination-
ensitivity is compromised to find an constrained optimal bal-
nce. 

.1. F-ratio as an intermediary criterion 

For discrimination in machine learning, F -ratio has broadly
erved as a criterion of feature selection Wolf (1972) , as
hown in Eq. (4) , 

 _ rat io grouping 

= 

between-group variability 

within-group variability 

. (4)

A higher F -ratio value indicates more appropriate feature
election for the target grouping. That is to say, the selected
eature with a higher F -ratio possesses higher discriminabil-
ty against the target grouping. As mentioned before, many
esearchers have made use of F -ratio to determine the impor-
ance of information in different frequency bands for speaker
dentification. Similarly, it is also adopted here to quantify
he importance of frequency bands for speaker verification
n terms of long-term speaker variability and our approach
iffers from theirs in way of grouping. 

In our case, each frequency band makes feature selection,
nd the speaker verification task across time-separated ses-
ions makes the target grouping. There exist two different
roupings: by speaker for each time-separated session and by
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ession for each speaker. The first kind of grouping is just
he one usually employed in the traditional speaker verifica-
ion task, as it is covered in Section 2 , while the second kind
f grouping is the special one in terms of long-term speaker
ariability. 

As discussed above, more emphasis should be placed on
requency bands that reveal higher discrimination for the
peaker-specific information (a higher F -ratio value when
rouping by speaker, denoted as F _ rat io _ spk), and lower
ensitivity for the time-separated session-specific information
hereinafter referred to as F _ rat io _ ssn). Therefore, the fi-
al overall discrimination-sensitivity of each frequency band
hould have a positive correlation with its F _ rat io _ spk, while
egative with its F _ rat io _ ssn. 

Since the energy is the most important attribute of a fre-
uency band that is closely related to the resulting cepstra,
he power spectrum is used as the distance measure in F -ratio
alculation. The equations of this calculation and the determi-
ation of the final overall discrimination-sensitivity are given
n detail below. 

.2. F-ratio based discrimination-sensitivity score definition 

Assume that the whole frequency range is uniformly di-
ided into K frequency bands, and there are I speakers and S
ime-separated sessions for the corresponding F -ratio calcula-
ion, with the same configuration as in Section 2 . 

For each frequency bank k , the averaged F _ rat io _ spk k : 

 _ rat io _ spk k = 

( 

S ∏ 

s=1 

F _ rat io _ spk s,k 

) 

1 
S 

. (5) 

Similarly, the second kind of F -ratio, denoted as
 _ rat io _ ssn, is illustrated by Eq. (6) : 

 _ rat io _ ssn i,k = 

S ∑ 

s=1 

(
μi,s,k − μi,k 

)2 

S ∑ 

s=1 

1 

N i,s 

N i,s ∑ 

j=1 

(
x i,s, j,k − μi,s,k 

)2 

, (6) 

here F _ rat io _ ssn i,k denotes the corresponding F -ratio value 
f frequency band k of speaker i , and μi, k is the average
alculated as follows. 

i,k = 

1 

S 

S ∑ 

s=1 

μi,s,k . (7) 

For each frequency band k , the averaged F _ rat io _ ssn k : 

 _ rat io _ ssn k = 

( 

I ∏ 

i=1 

F _ rat io _ ssn i,k 

) 

1 
I 

. (8) 

In this way, two F-ratio values are obtained for each fre-
uency band. 

.3. Determining the overall discrimination-sensitivity 

Frequency bands with higher F _ rat io _ spk k reveal higher 
iscrimination for the speaker-specific information, while fre-
uency bands with lower F _ rat io _ ssn k reveal lower sensitiv- 
ty for the time-separated session-specific information. Fre-
uency bands with high values should have higher over-
ll discrimination-sensitivity in speaker verification. Thus for
ach frequency band k , an overall discrimination-sensitivity
core Di scri m _ scor e k can be defined by Eq. (9) . 

i scri m _ scor e k = log 

(
F _ rat io _ spk k 
F _ rat io _ ssn k 

)
. (9) 

Actually, the overall discrimination sensitivity score with-
ut the logarithmic operation has also been compared in ex-
eriments, but did not function so well as the one with the
ogarithmic operation shown in Eq. (9) . A comparison of them
n the verification performance is illustrated in Section 6 . 

As a result more emphasis should be placed on frequency
ands with higher Di scri m _ scor e k . 

In this section, F -ratio has been employed as a criterion to
etermine the discrimination-sensitivity of different frequency 

ands in our data-driven approach. Although it is theoretically
ased on a single Gaussian distribution assumption, this sim-
le approach will be shown later experimentally that it is
ffective for frequency band selection. 

. Discriminability emphasis during feature extraction 

Nowadays, cepstral coefficients are still widely used as
coustic features in speaker verification applications, and
mong them, MFCC is still the dominant one. To extract cep-
tral coefficients, different emphasis among frequency bands
an be implemented: pre-filtering frequency warping and post-
ltering weighting. By performing frequency warping, the fil-

er bank resolution can be changed according to the over-
ll discrimination-sensitivity score. Higher resolution means 
ore information can be extracted from those correspond-

ng frequency bands. Furthermore, outputs weighting of filter
anks is also a straightforward method to increase the pro-
ortion of effects from those corresponding frequency bands
n generating the final acoustic features. The two methods are
resented in more details below. 

.1. Frequency warping 

The Mel scale, taking into account human auditory char-
cteristics, is a frequency warping used extensively in speech
pplications. It employs higher resolutions in lower frequen-
ies, while lower resolutions in higher frequencies. Thus more
etailed information is extracted in low frequencies. With this
ethod, lower frequency bands are emphasized, which are

enerally believed to contain more information, and higher
requency bands are suppressed, which are generally believed
o contain more speaker-specific information. Thus it is inter-
sting to argue whether MFCC serves as a proper frequency
arping method for speaker verification and the authors in
hou et al. (2011) suggest that LFCC (Linear Frequency
epstral Coefficients) should be used for speaker recognition

asks. 
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Algorithm 1 Design of a frequency warping table accord- 
ing to discrimination scores of frequency bands to maximize 
speaker recognition. 
1: Inputs: original frequency before warping orig_freq , dis- 

crimination score vector of frequency bands discrim_score 
2: Output: warped frequency warped_freq 

3: num ← size of discrim_score 
4: sum ← sum of discrim_score 
5: freq_range ← frequency range of all frequency bands 
6: freq_start ← starting frequency of those frequency bands 
7: width ← freq_range / num 

8: index ← ( orig_freq − freq_start ) / width 

9: rest ← ( orig_freq − freq_start ) mod width 

10: acc ← 0 

11: for k = 0 to index − 1 do 

12: acc ← acc + discrim_score(k) 
13: end for 
14: rest ← rest / width ∗ discrim_score(index) 
15: warped_freq ← ( acc + rest ) ∗ freq_range / sum 

16: return warped_freq 

 

e  

d

Therefore, in the target task, the frequency resolu-
tion of each frequency band is determined according to
its overall discrimination-sensitivity score as calculated in
Section 4 . For example, suppose that Di scri m _ scor e k is twice
of Di scri m _ scor e k−1 , their corresponding frequency bands in
the warped frequency domain are shown in Fig. 5 with the
frequency resolution of frequency band k twice of that of
k − 1 . 

In this way, a relationship between the two frequency do-
mains is established, and the warping algorithm is described
in Algorithm 1 . 

5.2. Filter-bank outputs weighting 

Given the log-energy spectrum after the triangular filtering,
denoted as S ( k ), we can define the weighted energy spectrum

 eighted _ S ( k ) as in Eq. (10) , 

 eighted _ S ( k ) = Discrim _ score k+1 · S ( k ) . (10)

The equation of the following DCT goes as Eq. 11 . 

Cepstrum ( n ) = 

K−1 ∑ 

k=0 

W eighted S (k) · cos 

(
πn(k + 0. 5) 

K 

)

= 

K−1 ∑ 

k=0 

Di scri m _ scor e k+1 · S(k) · cos 

(
πn(k + 0. 5) 

K 

)
. (11)
In the resulting cepstra, the portion of the effect of
ach frequency band is emphasized according to its overall
iscrimination-sensitivity score. 
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Table 3 
A comparison of the four kinds of features in EER of each recording session. 

Recording MFCC LFCC Proposed approach 

session Warping Weighting 

2nd 4 .5 4 .7 4.0 4 .1 
3rd 6 .4 6 .6 6.1 6 .5 
4th 7 .4 7 .3 6.6 7 .2 
5th 8 .1 7 .2 7.5 7 .8 
6th 8 .7 7 .2 7.2 7 .8 
7th 8 .9 8 .6 8.4 9 .0 
8th 9 .3 8 .7 8.5 9 .1 
9th 9 .9 8 .4 7.9 8 .7 
10th 9 .6 8 .5 8.1 8 .5 
11th 10 .0 9 .3 8.9 10 .0 
12th 9 .7 9 .8 8.8 9 .7 
13th 11 .1 11 .0 9.7 10 .1 
14th 11 .0 11 .2 9.4 9 .7 

Table 4 
A comparison of different features in the mean and standard deviation of 
EERs across recording sessions. 

Features Performance Relative reduction 

Mean StDev Mean StDev 

MFCC (baseline) 9.18 1.38 – –
LFCC 8.65 1.48 5.77 −7.24 
Warping 8.09 1.09 11.87 21.01 
Weighting 8.68 1.15 5.45 16.67 
Warping_NoLog 8.87 1.22 3.38 11.59 
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. Experiments and results 

.1. Experimental setup 

Since the proposed approach is feature-based, a GMM-
BM system described in Section 2 was adopted as the ex-
erimental system to verify its effectiveness, with the benefit
f faster computation and fewer hyperparameters over other
ophisticated techniques like JFA Kelly et al. (2012a ). The
aseline MFCC features, LFCC features Zhou et al. (2011)
nd new features generated from the proposed approaches
hared the same configuration: 16-dimensional cepstral coef-
cients and their first derivatives. 

For each recording session in CSLT-Chronos, we divided
he sentence set into two equal subsets: one for the over-
ll discrimination-sensitivity determination (development data 
et) and the other one for training and verification. Also, for
he latter part, 3 utterances from the second session were cho-
en for speaker model training and other utterances from all
3 sessions were used for verification. Experimental details
re shown in the following subsections. 

.2. The overall discrimination sensitivity of frequency bands

The whole frequency range was divided into 30 frequency
ands uniformly as described in Section 2 . 

The F _ rat io _ spk k and F _ rat io _ ssn k values calculated 

hrough Eq. (5) and Eq. (8) for each frequency band are plot-
ed in Fig. 6 , respectively. 

The curve of F _ rat io _ spk values goes smoothly from
00Hz to 2000Hz (frequency bands 5–16). After that, the
urve climbs up and reaches two local peaks around 2800Hz
nd 3700Hz (frequency bands 21 and 28). However, the curve
f F _ rat io _ ssn values goes up after 700Hz (frequency band
) with an almost consistent positive slope. There exist two
ocal peaks, which are located around 1400Hz and 3400Hz
frequency bands 11 and 26). 

The overall discrimination-sensitivity score Discrim s core k 
f each frequency band is calculated by Eq. (9) , and shown
n Fig. 7 . 

The curve in Fig. 7 is a compromise of the two curves
n Fig. 6 . For example, higher frequency bands should be
mphasized, but not that much as in the F _ rat io _ spk curve,
ecause higher frequency bands also have worse (i.e., higher
ensitivity) F _ rat io _ ssn values. A similar situation also exists
or lower frequency bands. 

Omitting the logarithmic operation in Eq. (9) , we could
btain another series of the overall discrimination-sensitivity
cores, the trend of which is just the same as shown in Fig. 7 .

.3. Experimental results 

Experiments on the proposed discriminability emphasis
ethod were done based on the Di scri m _ scor e curve in
ig. 7 . Acoustic features were extracted in two ways: fre-
uency warping and filter-bank output weighting, were de-
oted as Warping Features and Weighting Features. A com-
arison of the acoustic features (MFCC features, LFCC fea-
ures, Warping Features, and Weighting Features) for each
ecording session is shown in Fig. 8 , and EER(%) values are
pecified in Table 3 . 

As shown in Fig. 8 , the MFCC and the LFCC features
chieved comparable performance in the first three sessions
nd in the last three sessions, however in other sessions the
FCC features greatly outperformed the MFCC features. The
roposed Weighting Features gave the overall performance
ith higher recognition accuracy than the MFCC features in
ost recording sessions, but did not show superiority in error

ates over the LFCC features. The proposed Warping Features
onsistently outperformed the baseline MFCC features and
he proposed Weighting Features for every recording session
nd also outperformed the LFCC features in most recording
essions, with the fifth session as an exception, where the
FCC features gave a slightly lower error rate. 

An empirical study of whether or not to take the loga-
ithm in Eq. (9) when calculating the overall discrimination-
ensitivity was also conducted. We take the frequency warp-
ng approach as an example. By omitting the logarithmic op-
ration in Eq. (9) , another kind of acoustic features can be
btained, denoted as Warping_NoLog Features. The overall
erformance between Warping Features and Warping_NoLog 

eatures is also compared in Table 4 . The Warping Features
ielded higher recognition accuracy than the Warping_NoLog 

eatures, which outperformed the MFCC features. Therefore,
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Table 5 
p -values of the Student’s t-test for the “null hypothesis” that the two proposed 
kinds of features perform similarly as the MFCC features. 

Features pairs p -Values 

MFCC-Warping 1 . 62 × 10 −5 

MFCC-Weighting 9 . 35 × 10 −3 
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n the proposed method, the overall discrimination-sensitivity
core was calculated with the logarithm. 

.4. Robustness regarding long-term speaker variability 

EER is commonly used as a one number measure in evalu-
ting the overall performance of a speaker verification system,
hich is a cross-over point where values, the false acceptance

ate (FAR) and the false rejection rate (FRR), are equal. 
For the target speaker verification task across time-

eparated sessions, a series of EERs can generally be ob-
ained, as listed in Table 3 . When comparing the performance
f two acoustic features, we compared two arrays of EERs.
he acoustic features with an array of consistently lower
ERs or more slowly changing EERs are preferred, corre-
ponding to both aspects of the target task: more speaker-
pecific and more time-insensitive, respectively, as mentioned
efore. Thus, it is natural to use statistics of the array of EERs
o evaluate the overall performance of acoustic features, such
s the mean and standard deviation. 

The mean of the array of EERs indicates the averaged per-
ormance of speaker verification for all recording sessions,
hile the standard deviation serves as an indicator of robust-
ess across time-separated sessions. Then Table 4 shows an-
ther comparison of the four kinds of acoustic features in
he mean and the standard deviation of EERs across sessions.
ince training data were from the second session, only the
emaining 12 sessions (the third to fourteenth sessions) were
onsidered in this section to avoid possible bias. 
From the statistics in Table 4 , especially the relative reduc-
ion of the standard deviation of EERs, it can be concluded
hat the two proposed acoustic features both yielded higher
ecognition accuracy than the MFCC features for the target
ssue in speaker verification. The LFCC features achieved
ower error rate on average recognition performance, but not
hat robust as the MFCC features. Also, in this F -ratio based
iscrimination-sensitivity scenario, the Warping Features gave 
igher recognition accuracy and more robust performance
han the Weighting Features. 

In order to further examine the statistical significance of
he experimental results as shown in Table 3 , tests of nor-

ality were first performed on the three lists of EERs corre-
ponding to MFCC, Warping and Weighting features, and they
ll passed the Jarque–Bera test with a significance level of
.01 Jarque and Bera (1987) . Then p -values were calculated
hrough the paired Students t -test for the “null hypothesis”
evore (1995) that the two proposed kinds of features per-

orm similarly as the MFCC features, respectively, and shown
n Table 5 . (The null hypothesis is rejected if p -values are
maller than a certain significance level, traditionally 0.05 or
.01.) 
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Fig. 9. Experimental results of i-vector systems. 
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Table 5 clearly demonstrates the statistical significance of
the two proposed kinds of features over the MFCC features as
the p -values were smaller than 0.01, especially the Warping
Features. 
.5. Generalization of the proposed approach 

The proposed approach worked well on the specially-
reated CSLT-Chronos in the conventional GMM-UBM
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ramework. However, we would like to verify the improve-
ent of proposed features to other databases, e.g. the widely-

sed NIST SRE (Speaker Recognition Evaluation) databases.
ake the state-of-the-art, i-vector based systems, the load-

ng matrix T c in i-vector models is trained through unsuper-
ised learning, which might affect the performance of the
roposed approach aiming at discriminability emphasis based
n F -ratio. Furthermore, i-vectors are usually fed into dis-
riminative models to achieve further performance, such as
DA Dehak et al. (2011) or PLDA Prince and Elder (2007)
odels, which also make use of similar linear discriminant

riteria in training their projection matrices. 
Therefore, the baseline MFCC features and the proposed

eighting Features are tested on the NIST SRE 2008 database
IS (2008) within the i-vector framework, based on the
i scri m _ scor e curve obtained from CSLT-Chronos as shown

n Fig. 7 . 
1997 female speakers were selected from the core evalua-

ion data set (short2-short3) of NIST SRE 2008, and 59,343
rials were made (including 47,184 impostor trials). 

Apart from the standard i-vector system with the sim-
le cosine-distance scoring, i-vector/LDA and i-vector/PLDA 

ystems were also implemented. 7196 female speakers from
he Fisher corpus (English speech) were selected to train
he loading matrix T c for i-vector extractor (400 dimensions)
nd the projection matrix G for LDA/PLDA (150 dimensions
or the speaker subspace). A 2048-mixture gender-dependent 
BM was also trained using utterances from 4000 randomly-

elected female speakers in the Fisher corpus. Experimen-
al results of i-vector systems with both the baseline MFCC
eatures and the proposed Weighting Features are shown in
ig. 9 . 

It can be seen that, in most test conditions except for 4
nd 7, Weighting Features showed no advantage over MFCC
eatures in the standard i-vector system, probably due to sup-
ression of discriminability emphasis in parameter training
s discussed before. However, when LDA or PLDA models
ere applied, Weighting Features outperformed MFCC fea-

ures in most test conditions with the exception of test condi-
ion 5 in the i-vector/LDA system and test condition 2 in the
-vector/PLDA system. This indicated that the advantage of

eighting Features could be recovered with aid of those dis-
riminative models, which lead to significant performance im-
rovement. Meanwhile, it also verified that the Di scri m _ scor e
urve is well generalizable: the parameters derived from
 small database can be extended successfully to other i-
ector based systems trained with a large multi-channel
atabase. 

. Conclusions and future work 

In this paper, we studied how to find more appropriate
coustic features for speaker verification in terms of long-
erm performance. Emphases are made among the frequency
and selection. A strategy based on the F -ratio criterion is
roposed to determine the overall discrimination-sensitivity
f frequency bands by considering both the speaker-specific
nformation and the session-specific variability information. 
ifferent emphasis is placed upon different frequency bands
uring feature extraction through pre-filtering frequency warp-
ng or post-filtering filter-bank output weighting. Experimen-
al results have shown that the two proposed acoustic features
ave both yielded higher and more robust recognition accu-
acy than the MFCC features, especially the Warping Fea-
ures, which outperforms MFCC significantly. 

While this paper explored the frequency warping and the
lter-bank output weighting separately, how to combine the

wo methods to achieve further performance improvement de-
erves more careful studies. 

Due to the lack of available speech resources for the pur-
ose of the target research, experiments were performed on
 specially-created CSLT-Chronos and a common database,
IST SRE 2008 database, which is publicly available to check

ts effectiveness. We hope to evaluate the proposed approach
n more databases in the future. 

Although theoretically, a higher F -ratio value means higher
iscrimination-sensitivity for the target grouping, it does not
ead to higher accuracy in speaker verification, as the final
ystem has a combined effect of features and models. Thus,
iscriminability emphasis based feature extraction through a
ata-driven approach will be studied further in the future. 
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